Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 299, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515031

RESUMO

BACKGROUND: Many studies have been performed to identify various genomic loci and genes associated with the meat quality in pigs. However, the full genetic architecture of the trait still remains unclear in part because of the lack of accurate identification of related structural variations (SVs) which resulted from the shortage of target breeds, the limitations of sequencing data, and the incompleteness of genome assemblies. The recent generation of a new pig breed with superior meat quality, called Nanchukmacdon, and its chromosome-level genome assembly (the NCMD assembly) has provided new opportunities. RESULTS: By applying assembly-based SV calling approaches to various genome assemblies of pigs including Nanchukmacdon, the impact of SVs on meat quality was investigated. Especially, by checking the commonality of SVs with other pig breeds, a total of 13,819 Nanchukmacdon-specific SVs (NSVs) were identified, which have a potential effect on the unique meat quality of Nanchukmacdon. The regulatory potentials of NSVs for the expression of nearby genes were further examined using transcriptome- and epigenome-based analyses in different tissues. CONCLUSIONS: Whole-genome comparisons based on chromosome-level genome assemblies have led to the discovery of SVs affecting meat quality in pigs, and their regulatory potentials were analyzed. The identified NSVs will provide new insights regarding genetic architectures underlying the meat quality in pigs. Finally, this study confirms the utility of chromosome-level genome assemblies and multi-omics analysis to enhance the understanding of unique phenotypes.


Assuntos
Genoma , Genômica , Suínos/genética , Animais , Carne/análise , Fenótipo , Cromossomos
2.
Sci Data ; 10(1): 761, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923776

RESUMO

As plentiful high-quality genome assemblies have been accumulated, reference-guided genome assembly can be a good approach to reconstruct a high-quality assembly. Here, we present a chromosome-level genome assembly of the Korean crossbred pig called Nanchukmacdon (the NCMD assembly) using the reference-guided assembly approach with short and long reads. The NCMD assembly contains 20 chromosome-level scaffolds with a total size of 2.38 Gbp (N50: 138.77 Mbp). Its BUSCO score is 93.1%, which is comparable to the pig reference assembly, and a total of 20,588 protein-coding genes, 8,651 non-coding genes, and 996.14 Mbp of repetitive elements are annotated. The NCMD assembly was also used to close many gaps in the pig reference assembly. This NCMD assembly and annotation provide foundational resources for the genomic analyses of pig and related species.


Assuntos
Cromossomos , Genoma , Sus scrofa , Suínos , Animais , Cromossomos/genética , Genômica , Anotação de Sequência Molecular , República da Coreia , Sus scrofa/genética , Suínos/genética
3.
Front Vet Sci ; 10: 1238544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671278

RESUMO

Schistosomus reflexus (SR) is one of the most common congenital anomalies found in cases of cattle dystocia; this disorder occurs mostly in cattle. Congenital anomalies such as SR are caused by various genetic and environmental factors, but no specific cause has been elucidated for SR. This study reports a case of SR in a Holstein dairy cattle fetus with congenital anomalies in Korea. Grossly, a distinct spine curvature was observed between the thoracic and lumbar vertebrae, accompanied by a consequential malformation from the sacrum to the occipital bone. Furthermore, the thoracic and abdominal organs were exposed. In computed tomography (CT) images, mild and severe kyphoscoliosis was observed in T1~11 and L1~6, respectively. Additionally, vertebral dysplasia was observed in S1~5 and Cd 1~5. To pinpoint the causal genes and mutations, we leveraged a custom 50K Hanwoo SNP-Chip and the Online Mendelian Inheritance in Animals (OMIA) database. As a result, we identified a nonsense mutation in apoptotic protease activating factor 1 (APAF1) within HH1 that was associated with a decrease in conception rate and an increase in abortion in Holstein dairy cattle. The genotype of the SR case was A/A, and most of the 1,142 normal Holstein dairy cattle tested as a control group had the genotype G/G. In addition, the A/A genotype did not exist in the control group. Based on the pathological, genetic, and radiological findings, the congenital abnormalities observed were diagnosed as SR.

4.
Poult Sci ; 102(8): 102720, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327746

RESUMO

Skin color in chickens is an economically important trait that determines the first impression of a consumer toward a broiler and can ultimately affect consumer choice in the market. Therefore, identification of genomic regions associated with skin color is crucial for increasing the sales value of chickens. Although previous studies have attempted to reveal the genetic markers associated with the skin coloration in chickens, most were limited to investigations of candidate genes, such as melanin-related genes, and focused on case/control studies based on a single or small population. In this study, we performed a genome-wide association study (GWAS) on 770 F2 intercrosses produced by an experimental population of 2 chicken breeds, namely Ogye and White Leghorns, with different skin colors. The GWAS demonstrated that the L* value among the 3 skin color traits is highly heritable, and the genomic regions located on 2 chromosomes (20 and Z) were detected to harbor SNPs significantly associated with the skin color trait, accounting for most of the total genetic variance. Particular genomic regions spanning a ∼2.94 Mb region on GGA Z and a ∼3.58 Mb region on GGA 20 were significantly associated with skin color traits, and in these regions, certain candidate genes, including MTAP, FEM1C, GNAS, and EDN3, were found. Our findings could help elucidate the genetic mechanisms underlying chicken skin pigmentation. Furthermore, the candidate genes can be used to provide a valuable breeding strategy for the selection of specific chicken breeds with ideal skin coloration.


Assuntos
Estudo de Associação Genômica Ampla , Pigmentação da Pele , Animais , Pigmentação da Pele/genética , Estudo de Associação Genômica Ampla/veterinária , Galinhas/genética , Genoma , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único
5.
iScience ; 26(3): 106236, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36915682

RESUMO

Today, breeds with ornamental traits such as exceptionally long tail feathers are economically valuable. However, the genetic basis of long-tail feathers is yet to be understood. To provide better understanding of long tail feathers, we sequenced Korean long-tailed chicken (KLC) genomes and compared them with genomes of other chicken breeds. We first analyzed the genome structure of KLC and its genomic relationship with other chickens and observed unique characteristics. Subsequently, we searched for genomic regions under selection. Feather keratin 1-like enriched region and several genes were found to have novel putative functions and effects on the long tail trait in KLC. Our findings support the value of KLC as a unique genetic resource and cast light on the genetic basis of long tail traits in avian species. We expect this novel knowledge to provide new genomic evidence and options for designing and implementing genetic improvements of ornamental chicken productivity through precision crossbreeding aids.

6.
Anim Cells Syst (Seoul) ; 26(6): 358-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605592

RESUMO

Sex is a major biological factor in the development and physiology of a sexual reproductive organism, and its role in the growing process is needed to be investigated in various species. We compare blood transcriptome between 5 males and 5 females in 4-week-old Rhode Island Red chickens and perform functional annotation of differentially expressed genes (DEGs). The results are as follows. 141 and 109 DEGs were located in autosomes and sex chromosomes, respectively. The gene ontology (GO) terms are significantly (p < 0.05) enriched, which were limb development, inner ear development, positive regulation of dendrite development, the KEGG pathway the TGF-beta signaling pathway, and melanogenesis (p < 0.05). These pathways are related to morphological maintenance and growth of the tissues. In addition, the SMAD2W and the BMP5 were involved in the TGF-beta signaling pathway, and both play an important role in maintaining tissue development. The major DEGs related to the development of neurons and synapses include the up-regulated NRN1, GDF10, SLC1A1, BMP5, NBEA, and NRXN1. Also, 7 DEGs were validated using RT-qPCR with high correlation (r 2 = 0.74). In conclusion, the differential expression of blood tissue in the early growing chicken was enriched in TGF-beta signaling and related to the development of neurons and synapses including SMAD2W and BMP5. These results suggest that blood in the early growing stage is differentially affected in tissue development, nervous system, and pigmentation by sex. For future research, experimental characterization of DEGs and a holistic investigation of various tissues and growth stages will be required.

7.
BMC Genomics ; 22(1): 594, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34348642

RESUMO

BACKGROUND: Annual molt is a critical stage in the life cycle of birds. Although the most extensively documented aspects of molt are the renewing of plumage and the remodeling of the reproductive tract in laying hens, in chicken, molt deeply affects various tissues and physiological functions. However, with exception of the reproductive tract, the effect of molt on gene expression across the tissues known to be affected by molt has to date never been investigated. The present study aimed to decipher the transcriptomic effects of molt in Ginkkoridak, a Korean long-tailed chicken. Messenger RNA data available across 24 types of tissue samples (9 males) and a combination of mRNA and miRNA data on 10 males and 10 females blood were used. RESULTS: The impact of molt on gene expression and gene transcript usage appeared to vary substantially across tissues types in terms of histological entities or physiological functions particularly related to nervous system. Blood was the tissue most affected by molt in terms of differentially expressed genes in both sexes, closely followed by meninges, bone marrow and heart. The effect of molt in blood appeared to differ between males and females, with a more than fivefold difference in the number of down-regulated genes between both sexes. The blueprint of molt in roosters appeared to be specific to tissues or group of tissues, with relatively few genes replicating extensively across tissues, excepted for the spliceosome genes (U1, U4) and the ribosomal proteins (RPL21, RPL23). By integrating miRNA and mRNA data, when chickens molt, potential roles of miRNA were discovered such as regulation of neurogenesis, regulation of immunity and development of various organs. Furthermore, reliable candidate biomarkers of molt were found, which are related to cell dynamics, nervous system or immunity, processes or functions that have been shown to be extensively modulated in response to molt. CONCLUSIONS: Our results provide a comprehensive description at the scale of the whole organism deciphering the effects of molt on the transcriptome in chicken. Also, the conclusion of this study can be used as a valuable resource in transcriptome analyses of chicken in the future and provide new insights related to molt.


Assuntos
Galinhas , Transcriptoma , Animais , Galinhas/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Muda/genética , República da Coreia
8.
Animals (Basel) ; 11(7)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34359194

RESUMO

Hanwoo was originally raised for draft purposes, but the increase in local demand for red meat turned that purpose into full-scale meat-type cattle rearing; it is now considered one of the most economically important species and a vital food source for Koreans. The application of genomic selection in Hanwoo breeding programs in recent years was expected to lead to higher genetic progress. However, better statistical methods that can improve the genomic prediction accuracy are required. Hence, this study aimed to compare the predictive performance of three machine learning methods, namely, random forest (RF), extreme gradient boosting method (XGB), and support vector machine (SVM), when predicting the carcass weight (CWT), marbling score (MS), backfat thickness (BFT) and eye muscle area (EMA). Phenotypic and genotypic data (53,866 SNPs) from 7324 commercial Hanwoo cattle that were slaughtered at the age of around 30 months were used. The results showed that the boosting method XGB showed the highest predictive correlation for CWT and MS, followed by GBLUP, SVM, and RF. Meanwhile, the best predictive correlation for BFT and EMA was delivered by GBLUP, followed by SVM, RF, and XGB. Although XGB presented the highest predictive correlations for some traits, we did not find an advantage of XGB or any machine learning methods over GBLUP according to the mean squared error of prediction. Thus, we still recommend the use of GBLUP in the prediction of genomic breeding values for carcass traits in Hanwoo cattle.

10.
Sci Rep ; 11(1): 7219, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785872

RESUMO

Pig as a food source serves daily dietary demand to a wide population around the world. Preference of meat depends on various factors with muscle play the central role. In this regards, selective breeding abled us to develop "Nanchukmacdon" a pig breeds with an enhanced variety of meat and high fertility rate. To identify genomic regions under selection we performed whole-genome resequencing, transcriptome, and whole-genome bisulfite sequencing from Nanchukmacdon muscles samples and used published data for three other breeds such as Landrace, Duroc, Jeju native pig and analyzed the functional characterization of candidate genes. In this study, we present a comprehensive approach to identify candidate genes by using multi-omics approaches. We performed two different methods XP-EHH, XP-CLR to identify traces of artificial selection for traits of economic importance. Moreover, RNAseq analysis was done to identify differentially expressed genes in the crossed breed population. Several genes (UGT8, ZGRF1, NDUFA10, EBF3, ELN, UBE2L6, NCALD, MELK, SERP2, GDPD5, and FHL2) were identified as selective sweep and differentially expressed in muscles related pathways. Furthermore, nucleotide diversity analysis revealed low genetic diversity in Nanchukmacdon for identified genes in comparison to related breeds and whole-genome bisulfite sequencing data shows the critical role of DNA methylation pattern in identified genes that leads to enhanced variety of meat. This work demonstrates a way to identify the molecular signature and lays a foundation for future genomic enabled pig breeding.


Assuntos
Genômica , Suínos/genética , Animais , Cruzamento , Genômica/métodos , Músculos/metabolismo , Filogenia , Carne de Porco , Seleção Genética , Transcriptoma , Sequenciamento Completo do Genoma
11.
Int J Biol Macromol ; 178: 514-526, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662419

RESUMO

The binding mode to TAP (i.e., the peptide transporter associated with antigen processing) from a viral peptide thus far has been unknown in the field of antiviral immunity, but an interfering mode from a virus-encoded TAP inhibitor has been well documented with respect to blocking the TAP function. In the current study, we predicted the structure of the pig TAP transporter and its inhibition complex by the small viral protein ICP47 of the herpes simplex virus (HSV) encoded by the TAP inhibitor to exploit inhibition of the TAP transporter as the host's immune evasion strategy. We found that the hot spots (residues Leu5, Tyr22, and Leu51) on the ICP47 inhibitor interface tended to prevail over the favored Leu and Tyr, which contributed to significant functional binding at the C-termini recognition principle of the TAP. We further characterized the specificity determinants of the peptide transporter from the pig TAP by the ICP47 inhibitor effects and multidrug TmrAB transporter from the Thermus thermophillus and its immunity regarding its structural homolog of the pig TAP. The specialized structure-function relationship from the pig TAP exporter could provide insight into substrate specificity of the unique immunological properties from the host organism. The TAP disarming capacity from all five viral inhibitors (i.e., the five virus-encoded TAP inhibitors of ICP47, UL49.5, U6, BNLF2a, and CPXV012 proteins) was linked to the infiltration of the TAP functional structure in an unstable conformation and the mounting susceptibility caused by the host's TAP polymorphism. It is anticipated that the functional characterization of the pig TAP transporter based on the pig genomic variants will lead to additional insights into the genotype and single nucleotide polymorphism (SNP) in relation to antiviral resistance and disease susceptibility.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Proteínas Imediatamente Precoces/química , Evasão da Resposta Imune , Simplexvirus/química , Transportadores de Cassetes de Ligação de ATP/imunologia , Animais , Humanos , Proteínas Imediatamente Precoces/imunologia , Simplexvirus/imunologia , Relação Estrutura-Atividade , Suínos
12.
Animals (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011190

RESUMO

Hanwoo, an indigenous Korean cattle breed, has been genetically improved by selecting superior sires called Korean-proven bulls. However, cows still contribute half of the genetic stock of their offspring, and allelic-specific expressed genes have potential, as selective targets of cows, to enhance genetic gain. The aim of this study is to identify genes that have MAEs based on both the genome and transcriptome and to estimate their effects on breeding values (BVs) for economically important traits in Hanwoo. We generated resequencing data for the parents and RNA-sequencing data for the muscle, fat, and brain tissues of the offspring. A total of 3801 heterozygous single nucleotide polymorphisms (SNPs) in offspring were identified and they were located in 1569 genes. Only 14 genes showed MAE (seven expressing maternal alleles and seven expressing paternal alleles). Tissue-specific MAE was observed, and LANCL1 showed maternal allele expression across all tissues. MAE genes were enriched for the biological process of cell death and angiogenesis, which included ACKR3 and PDCL3 genes, whose SNPs were significantly associated with BVs of lean meat production-related traits, such as weight at 12 months of age, carcass weight, and loin eye area. In the current study, monoallelically expressed genes were identified in various adult tissues and these genes were associated with genetic capacity in Hanwoo.

15.
Animals (Basel) ; 10(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585973

RESUMO

Hanwoo is one of the most economically important animal species in Korea due to its significant contribution to nutrition. However, the current selection index only focuses to improve carcass traits of Hanwoo. Thus, this study aimed to estimate the genetic parameters of birth weight (BW) and weaning weight (WW) and their genetic and phenotypic relationship to the age at first calving (AFC) and gestation length (GL) of Hanwoo. The genetic parameters for birth weight (BW) and weaning weight (WW) were estimated using the data obtained from 52,173 and 35,800 Hanwoo calves born from February 1998 to March 2017, respectively. Further, these data were used to determine their genetic and phenotypic correlation to age at first calving (AFC) and gestation length (GL). The heritability estimates of BW and WW and correlation coefficients were obtained using the average information restricted maximum likelihood (AIREML) procedure, fit in single and two-trait linear animal models. The estimated direct heritability for BW and WW was moderate (0.22 ± 0.02) and high (0.51 ± 0.03), respectively, while the maternal heritability for both traits was 0.12 ± 0.01 and 0.17 ± 0.01, respectively. The genetic correlation of BW and reproductive traits (AFC and GL) showed a moderate and high positive correlation coefficient of 0.33 ± 0.06 and 0.53 ± 0.02, respectively, while close to zero and low positive phenotypic correlations of 0.06 ± 0.01 and 0.21 ± 0.06 were also observed between the correlated traits, respectively. For the correlation analysis between WW and AFC, both the genetic and phenotypic correlation showed close to zero values of 0.04 ± 0.06 and -0.01 ± 0.01, respectively. Meanwhile, the genetic and phenotypic correlation between WW and GL showed low and negative correlations of -0.09 ± 0.06 and -0.09 ± 0.01, respectively. These obtained estimated variances for BW and WW and their corresponding genetic and phenotypic correlation to AFC and GL can be used as information for genetic improvement and subsequent economic improvement of Hanwoo farming.

16.
Genes (Basel) ; 11(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423003

RESUMO

Hanwoo, is the most popular native beef cattle in South Korea. Due to its extensive popularity, research is ongoing to enhance its carcass quality and marbling traits. In this study we conducted a haplotype-based genome-wide association study (GWAS) by constructing haplotype blocks by three methods: number of single nucleotide polymorphisms (SNPs) in a haplotype block (nsnp), length of genomic region in kb (Len) and linkage disequilibrium (LD). Significant haplotype blocks and genes associated with them were identified for carcass traits such as BFT (back fat thickness), EMA (eye Muscle area), CWT (carcass weight) and MS (marbling score). Gene-set enrichment analysis and functional annotation of genes in the significantly-associated loci revealed candidate genes, including PLCB1 and PLCB4 present on BTA13, coding for phospholipases, which might be important candidates for increasing fat deposition due to their role in lipid metabolism and adipogenesis. CEL (carboxyl ester lipase), a bile-salt activated lipase, responsible for lipid catabolic process was also identified within the significantly-associated haplotype block on BTA11. The results were validated in a different Hanwoo population. The genes and pathways identified in this study may serve as good candidates for improving carcass traits in Hanwoo cattle.


Assuntos
Bovinos/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Adiposidade , Animais , Peso Corporal , Cadáver , Ontologia Genética , Lipase/genética , Carne , Músculos Oculomotores/anatomia & histologia , Fosfolipase C beta/genética , Polimorfismo de Nucleotídeo Único , Software
17.
Front Genet ; 11: 134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211021

RESUMO

Genomic prediction is an effective way to estimate the genomic breeding values from genetic information based on statistical methods such as best linear unbiased prediction (BLUP). The used of haplotype, clusters of linked single nucleotide polymorphism (SNP) as markers instead of individual SNPs can improve the accuracy of genomic prediction. Since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with a cluster of markers is higher compared to an individual marker. To make haplotypes efficient in genomic prediction, finding optimal ways to define haplotypes is essential. In this study, 770K or 50K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 3,498 cattle. Using SNP chip data, haplotype was defined in three different ways based on 1) the number of SNPs included, 2) length of haplotypes (bp), and 3) agglomerative hierarchical clustering based on LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; 5, 10, 20 or 50 SNPs on average per haplotype. A linear mixed model using haplotype to calculated the covariance matrix was applied for testing the prediction accuracy of each haplotype size. Also, conventional SNP-based linear mixed model was tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight (CWT), eye muscle area (EMA) and backfat thickness (BFT) were used as the phenotypes. This study reveals that using haplotypes generally showed increased accuracy compared to conventional SNP-based model for CWT and EMA, but found to be small or no increase in accuracy for BFT. LD clustering-based haplotypes specifically the five SNPs size showed the highest prediction accuracy for CWT and EMA. Meanwhile, the highest accuracy was obtained when length-based haplotypes with five SNPs were used for BFT. The maximum gain in accuracy was 1.3% from cross-validation and 4.6% from forward validation for EMA, suggesting that genomic prediction accuracy can be increased by using haplotypes. However, the improvement from using haplotypes may depend on the trait of interest. In addition, when the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles, thereby reducing computational costs. Therefore, finding optimal ways to define haplotypes and using the haplotype alleles as markers can improve the accuracy of genomic prediction.

18.
Genes (Basel) ; 11(3)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188084

RESUMO

Non-synonymous SNPs and protein coding SNPs within the promoter region of genes (regulatory SNPs) might have a significant effect on carcass traits. Imputed sequence level data of 10,215 Hanwoo bulls, annotated and filtered to include only regulatory SNPs (450,062 SNPs), were used in a genome-wide association study (GWAS) to identify loci associated with backfat thickness (BFT), carcass weight (CWT), eye muscle area (EMA), and marbling score (MS). A total of 15, 176, and 1 SNPs were found to be significantly associated (p < 1.11 × 10-7) with BFT, CWT, and EMA, respectively. The significant loci were BTA4 (CWT), BTA6 (CWT), BTA14 (CWT and EMA), and BTA19 (BFT). BayesR estimated that 1.1%~1.9% of the SNPs contributed to more than 0.01% of the phenotypic variance. So, the GWAS was complemented by a gene-set enrichment (GSEA) and protein-protein interaction network (PPIN) analysis in identifying the pathways affecting carcass traits. At p < 0.005 (~2,261 SNPs), 25 GO and 18 KEGG categories, including calcium signaling, cell proliferation, and folate biosynthesis, were found to be enriched through GSEA. The PPIN analysis showed enrichment for 81 candidate genes involved in various pathways, including the PI3K-AKT, calcium, and FoxO signaling pathways. Our finding provides insight into the effects of regulatory SNPs on carcass traits.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Mapas de Interação de Proteínas/genética , Animais , Bovinos , Genótipo , Carne , Fenótipo
19.
J Phys Chem B ; 124(6): 974-989, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31939671

RESUMO

The physics-based molecular force field (PMFF) was developed by integrating a set of potential energy functions in which each term in an intermolecular potential energy function is derived based on experimental values, such as the dipole moments, lattice energy, proton transfer energy, and X-ray crystal structures. The term "physics-based" is used to emphasize the idea that the experimental observables that are considered to be the most relevant to each term are used for the parameterization rather than parameterizing all observables together against the target value. PMFF uses MM3 intramolecular potential energy terms to describe intramolecular interactions and includes an implicit solvation model specifically developed for the PMFF. We evaluated the PMFF in three ways. We concluded that the PMFF provides reliable information based on the structure in a biological system and interprets the biological phenomena accurately by providing more accurate evidence of the biological phenomena.


Assuntos
Proteínas/química , Termodinâmica , Cristalografia por Raios X , Ligantes , Modelos Moleculares
20.
Front Genet ; 11: 603822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552124

RESUMO

Whole-genome sequence (WGS) data are increasingly being applied into genomic predictions, offering a higher predictive ability by including causal mutations or single-nucleotide polymorphisms (SNPs) putatively in strong linkage disequilibrium with causal mutations affecting the trait. This study aimed to improve the predictive performance of the customized Hanwoo 50 k SNP panel for four carcass traits in commercial Hanwoo population by adding highly predictive variants from sequence data. A total of 16,892 Hanwoo cattle with phenotypes (i.e., backfat thickness, carcass weight, longissimus muscle area, and marbling score), 50 k genotypes, and WGS imputed genotypes were used. We partitioned imputed WGS data according to functional annotation [intergenic (IGR), intron (ITR), regulatory (REG), synonymous (SYN), and non-synonymous (NSY)] to characterize the genomic regions that will deliver higher predictive power for the traits investigated. Animals were assigned into two groups, the discovery set (7324 animals) used for predictive variant detection and the cross-validation set for genomic prediction. Genome-wide association studies were performed by trait to every genomic region and entire WGS data for the pre-selection of variants. Each set of pre-selected SNPs with different density (1000, 3000, 5000, or 10,000) were added to the 50 k genotypes separately and the predictive performance of each set of genotypes was assessed using the genomic best linear unbiased prediction (GBLUP). Results showed that the predictive performance of the customized Hanwoo 50 k SNP panel can be improved by the addition of pre-selected variants from the WGS data, particularly 3000 variants from each trait, which is then sufficient to improve the prediction accuracy for all traits. When 12,000 pre-selected variants (3000 variants from each trait) were added to the 50 k genotypes, the prediction accuracies increased by 9.9, 9.2, 6.4, and 4.7% for backfat thickness, carcass weight, longissimus muscle area, and marbling score compared to the regular 50 k SNP panel, respectively. In terms of prediction bias, regression coefficients for all sets of genotypes in all traits were close to 1, indicating an unbiased prediction. The strategy used to select variants based on functional annotation did not show a clear advantage compared to using whole-genome. Nonetheless, such pre-selected SNPs from the IGR region gave the highest improvement in prediction accuracy among genomic regions and the values were close to those obtained using the WGS data for all traits. We concluded that additional gain in prediction accuracy when using pre-selected variants appears to be trait-dependent, and using WGS data remained more accurate compared to using a specific genomic region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...